PPAD ("Polynomial Parity Arguments on Directed graphs") is a complexity class introduced by Christos Papadimitriou in 1994. PPAD is a subclass of TFNP based on functions that can be shown to be total by a parity argument.[1][2] The class attracted significant attention in the field of algorithmic game theory because it contains the problem of computing a Nash equilibrium, and this problem was shown by Chen and Deng in 2005 to be complete for the class.[3]
PPAD is a class of problems that are believed to be hard, but obtaining PPAD-completeness is a weaker evidence of intractability than that of obtaining NP-completeness. It could still be the case that PPAD is the same class as P, and still have that P NP, though it seems unlikely. Examples of PPAD-complete problems include finding Nash equilibria, Brouwer and Borsuk-Ulam fixpoints, the cutting sandwich problem, finding Arrow Debreu equilibria in markets and more (The Complexity of Finding Nash Equilibria, Papadimitriou).
Contents |
PPAD is a subset of the class TFNP, the class of function problems in FNP that are guaranteed to be total. Its formal definition may be given as follows:
Subclasses of TFNP are defined based on the type of mathematical proof used to prove that a solution always exists. Informally, PPAD is the subclass of TFNP where the guarantee that there exists a y such that P(x,y) holds is based on a parity argument on a directed graph. The class is formally defined by specifying one of its complete problems, known as End-Of-The-Line:
Such a t must exist if an s does, because the structure of G means that vertices with only one neighbour come in pairs. In particular, given s, we can find such a t at the other end of the string starting at s. (Note that this may take exponential time if we just evaluate f repeatedly.)
PPAD is contained in (but not known to be equal to) PPA (the corresponding class of parity arguments for undirected graphs) which is contained in TFNP. PPAD is also contained in (but not known to be equal to) PPP, another subclass of TFNP. It contains CLS.